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Abstract Source-sink dynamics are an emergent

property of complex species–landscape interactions.

A better understanding of how human activities affect

source-sink dynamics has the potential to inform and

improve the management of species of conservation

concern. Here we use a study of the northern spotted

owl (Strix occidentalis caurina) to introduce new

methods for quantifying source-sink dynamics that

simultaneously describe the population-wide conse-

quences of changes to landscape connectivity. Our

spotted owl model is mechanistic, spatially-explicit,

individual-based, and incorporates competition with

barred owls (Strix varia). Our observations of spotted

owl source-sink dynamics could not have been

inferred solely from habitat quality, and were sensitive

to landscape connectivity and the spatial sampling

schemes employed by the model. We conclude that a

clear understanding of source-sink dynamics can best

be obtained from sampling simultaneously at multiple

spatial scales. Our methodology is general, can be

readily adapted to other systems, and will work with

population models ranging from simple and low-

parameter to complex and data-intensive.

Keywords HexSim � Habitat connectivity �
Net flux � Population viability analysis

Introduction

When models are used in conservation planning, there

will be tension between the drive for ever-increasing

realism, and caution inspired by an awareness of the

liabilities associated with model complexity. More

sophisticated models can account for realistic real-

world interactions (Koh et al. 2013; Kool et al. 2013),

for example the impacts that climate change (e.g.
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Nuñez et al. 2013) may have on a population that is

already responding to habitat loss and fragmentation

(e.g. Ferraz et al. 2007), and competition (e.g. Wiens

2012). But realism comes at a cost, as complex models

are harder to understand, parameterize, and defend

(Minor et al. 2008; Hudgens et al. 2012).

The incorporation of source-sink dynamics into

population models illustrates this trade-off. We know

from past work (Pulliam 1988; Liu et al. 2011) that

demographic sources are important for population

stability, but that sinks can play a critical role as

stepping stones for long distance dispersal, or by

increasing the likelihood that extirpated sites become

recolonized. Identifying and quantifying the value of

individual source and sink areas to a population is

becoming an important objective in conservation

research and planning (Hansen 2011; Jacobi and

Jonsson 2011). But meeting this goal is difficult

because it involves estimating occupancy rates,

movement rates, and landscape connectivity (Good-

win 2003; Baguette and Van Dyck 2007; Moilanen

2011; Rayfield et al. 2011; Koh et al. 2013; Kool et al.

2013). Simulation models can help, but those having

the capacity to perform such assessments tend to be

complex.

The most popular current approaches to quantifying

landscape connectivity involve applications of graph

theory (Bunn et al. 2000), circuit theory (McRae et al.

2008), and network flow (Phillips et al. 2008). These

innovations are inspiring the creation of parsimonious

management-relevant models. But thus far, these

methods also require that landscape structure and

species’ life histories be greatly simplified. Here we

develop a complementary approach that can simulate

source-sink dynamics and connectivity using as little

or as much ecological detail as is deemed appropriate.

In 1990, the northern spotted owl (Strix occidentalis

carina) was designated a threatened species under the

United States’ Endangered Species Act (USFWS

1990). At that time, northern spotted owl (NSO)

population declines were primarily attributed to hab-

itat loss (Thomas et al. 1990; McKelvey et al. 1993;

Noon and McKelvey 1996). Nearly half of the NSO’s

geographic range falls within public lands, and

political pressure associated with the granting of legal

status contributed to the creation of the Northwest

Forest Plan (USDA and USDI 1994), which helped

stem the loss of habitat by nearly doubling the amount

of federal land in habitat reserves. Since the NSO’s

initial listing, a congener, the barred owl (S. varia) has

gone from being worrisome (Courtney et al. 2004), to

become a significant factor complicating NSO man-

agement (Dugger et al. 2011; Forsman et al. 2011;

USFWS 2011; Wiens 2012; Yackulic et al. 2012).

Barred owl (BO) impacts are unevenly distributed

throughout the NSO’s 20 million ha geographic range,

and the BO is probably still in the midst of a range

expansion (Forsman et al. 2011; USFWS 2011—

Appendix B).

The fundamental challenges to NSO conservation

are not unique, but the species stands out because

enough is known about it to make the development of

complex demographic models possible. We make use

of a detailed NSO model here, but do so for the purpose

of introducing new methodology—our intent is not to

design, improve, or promote NSO management strat-

egies. We begin with the construction of a mechanistic,

spatially-explicit, individual-based model (IBM).

Then, using output from the IBM, we assemble matrix

models, and use them to characterize landscape

connectivity and NSO source-sink dynamics.

Methods

Study region

The U.S. range of the NSO extends from northern

California to the top of Washington state, and our NSO

simulations spanned this area. We made use of a static

map of NSO habitat quality, plus other spatial data that

captured additional features relevant to the simulation

model (see below). A small population of NSOs exists

in British Columbia, Canada, but our study did not

include this portion of the owl’s range.

Simulation model

We used HexSim (Heinrichs et al. 2010; Stronen et al.

2012; Marcot et al. 2013; Schumaker 2013) to

construct a population model for the NSO. HexSim

is a spatially-explicit, individual-based simulation

framework used to construct models of plant and

animal population dynamics and interactions. HexSim

models are built around a user-defined life cycle

consisting of a sequence of events including survival,

reproduction, movement, resource acquisition, species

interactions and more. Each simulated individual
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possesses traits that can vary probabilistically based

on genotype, or in response to age, resource avail-

ability, disturbance, and competition. Thus individual

attributes may change in time and space.

The simulation model used here was developed as

part of the most recent US Fish and Wildlife Service

recovery planning process for the NSO (USFWS

2011). Simulations began with 10,000 females placed

into the best habitats throughout the landscape (males

were not modeled). A large starting population

ensured that the simulated NSOs were initially well-

distributed throughout their range. We included

impacts of BOs on NSO survival rates, but did not

simulate BOs explicitly. Our principal results were

gathered from 10 replicate simulations of 1,000 time-

steps. Each time step was the equivalent of a single

year, but since our landscape conditions were static,

these simulations should not be construed as making

projections far into the future. Data other than

population size were gathered from time steps

500–1,000, well after the perturbations resulting from

initial conditions had subsided. Equivalent results

could have been obtained using larger numbers of

shorter replicates. Our approach (more time steps,

fewer replicates) was computationally efficient as the

simulations ran slowly prior to reaching steady state.

These 10 principal replicate simulations did not

include environmental stochasticity; however, a com-

panion set of 100 replicates were conducted that did.

These additional model runs made it possible to

examine how variability in the model parameters

affected our results.

Spatial data

HexSim represents space as an array of hexagonal

cells, and while these spatial data may be temporally

dynamic, only static maps were used in this study. Our

NSO model made use of three such input maps

describing NSO habitat conditions (circa 2006), 11

distinct modeling regions (USFWS 2011), and 12

physiographic provinces. The map of physiographic

provinces was used only for sampling, and had no

impact on the simulated NSOs. All of these maps were

converted into HexSim spatial data input files com-

prised of 543,400 hexagons, with each hexagon being

86.6 ha in area and 1 km across (measured as the

distance between parallel edges).

Our habitat and modeling region maps are

described in detail in Appendix C of the U.S. Fish

and Wildlife Service’s 2011 Revised Recovery Plan

for the NSO (USFWS 2011). NSO habitat is often

subdivided into distinct components including nest-

ing, roosting, foraging, and dispersal habitats. Nest-

ing–roosting habitat is also suitable for foraging and

dispersal, whereas foraging and dispersal habitats

provide only for those functions. As our intent was

to accurately capture the relative suitability of

breeding habitat for NSOs, we modeled nesting–

roosting and foraging (NRF) habitat, but not

dispersal habitat. We used information from a

literature review and expert opinion to develop a

series of alternative models of forest condition

corresponding to NRF habitat within each modeling

region.

We used MaxEnt (Phillips et al. 2008, Phillips

and Dudik 2008) to model relative habitat suitabil-

ity, and tested the effectiveness of our results using

cross-validation. We first identified the best NRF

habitat models individually for each modeling

region, and subsequently challenged them through

the addition of precipitation, temperature, and

climate variables (in an attempt to improve their

predictive ability). Through this approach we iden-

tified relative habitat suitability (RHS) models that

accurately and consistently discriminated among

areas of varying suitability for spotted owls without

over-fitting. Our RHS models were found to have

good to excellent discrimination ability, to be well

calibrated, and to have sufficient generality (US-

FWS 2011). These RHS models were evaluated at

the 200 ha scale (i.e., covariate values from the

200 ha area around each pixel were used to

estimate RHS of the focal pixel). MaxEnt assigned

each 30 9 30 m raster pixel in the RHS map an

integer weight between 0 (non-habitat) and 100

(optimal habitat).

Our HexSim habitat map was developed from the

RHS data by intersecting it with the grid of 543,400

hexagonal cells. Each hexagon was assigned a score

equal to the mean of the pixel values contained

within it. These scores, which averaged the RHS

data on a hexagon-by-hexagon basis, varied between

0.00 and 90.34. The RHS scores directly affected

dispersal behavior, strongly influenced survival rates

(through mechanisms discussed below), and indi-

rectly affected reproduction.
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Model parameters

Our NSOs had six separate traits that allowed individ-

uals to be categorized into (i) four stage classes

(fledgling, juvenile, sub-adult, and adult), (ii) three

resource classes (low, moderate, and high), (iii)

territory status (owner or floater), (iv) location, strat-

ified by modeling region, (v) location, stratified by

physiographic province, and (vi) BO exposure, which

varied based on modeling region (USFWS 2011). The

simulated NSOs interacted with the landscape through

two related mechanisms. First, the owls attempted to

construct relatively small non-overlapping territories,

which played a role in regulating owl densities and in

the determination of BO impacts. As is true in nature,

not all NSOs were successful at territory establish-

ment, and those who failed became non-breeding

‘‘floaters’’, at least temporarily. Second, our simulated

NSOs established large overlapping home ranges (the

size varied by modeling region), which they used to

acquire resources.

Simulated NSOs moved through the first three stage

classes yearly. Individuals were placed into three

resource classes based on their ability to acquire

resources (RHS was a proxy for resources). This

process involved resource acquisition targets, which

are input parameters that varied by modeling region,

and specified the amount of resource an unconstrained

NSO would attempt to acquire. Changes in resource

acquisition targets accounted for latitudinal differ-

ences in home range size (Gutiérrez et al. 1995). NSOs

that acquired less than 1/3 of their resource target were

assigned to the low resource class. Those who

acquired 2/3 or more were assigned to the high

resource class, and the remaining NSOs were put into

the moderate class. Resources were acquired from

simulated NSO home ranges, which were large and

could overlap. Resource acquisition rates were thus

emergent properties of the simulations that varied

based on modeling region, home range size (which

varied by modeling region), resource availability, and

competition with neighboring NSOs (the resources

available within a single hexagon were divided up

equally among any NSO who included that hexagon in

their home range).

Territory sizes were 2–3 hexagons, depending on

the RHS values. This implied that defended areas were

always 173 or 260 ha (see USFWS 2011). Territory

construction was restricted to adjacent hexagons with

habitat scores of 35 or more (on a scale of 0–90.34),

and all territories were required to have a minimum

cumulative habitat score of 105, which was possible

with two relatively high-value RHS hexagons, but

more commonly required three adjacent hexagons.

The life cycle was 1 year in length. The year began

with a survival event, with survival rates being a

function of stage class, resource class, and BO

presence–absence (see below). Next, each NSO’s

age was incremented by one year. Then floaters (NSOs

without territories) prospected for territories. Pros-

pecting NSOs were allowed to search an area up to

500 hexagons, in hopes of identifying a suitable

unoccupied territory. The search process was not

random; instead, NSOs tended to gravitate towards

better quality hexagons. Allowing NSOs to prospect

over such a large area could potentially exaggerate the

rate of successful territory establishment. However,

the large prospecting area afforded the simulated

NSOs some compensation for their relatively unso-

phisticated search strategy.

The next step in the NSO life cycle was to

determine whether newly territorial NSOs were to be

influenced by a BO, based on modeling region-specific

encounter probabilities that varied from 0.18 to 0.71

(USFWS 2011). Our simulated NSOs never aban-

doned their territories (a simplification made for the

sake of model parsimony), and the placement of NSOs

into BO influence categories (present versus absent)

was made just once for each territory-holding NSO,

immediately after territory establishment. Non-terri-

torial NSOs were assumed to be unaffected by BOs.

The BO encounter probabilities were based on the

proportion of NSO territories in which BOs were

detected on each of 11 demographic study areas

(Robert Anthony, Katie Dugger, pers. comm.; see

Forsman et al. 2011—Appendix B for details). The

consequence for simulated NSOs of exposure to a BO

was a lower survival rate (Table 1). Data describing

BO impacts on NSO reproduction or site fidelity were

not available range-wide, and these feedbacks were

therefore not included in the model.

The reproductive pulse followed the assignment of

BO impacts. Because our model was of females only,

we used empirically-derived fecundities (Forsman

et al. 2011) to parameterize reproduction. There was

no mortality between the reproduction and dispersal

events, so the fecundities could be interpreted as

numbers of fledglings per territorial female. We used
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fecundity values of 0, 0.070, 0.202, and 0.333 for stage

classes 0–3, respectively. HexSim’s reproduction

event is parameterized with probabilities for each

integer clutch size. Clutches were limited to 0, 1, or 2

NSOs, and the clutch size probabilities were obtained

from the fecundities under the assumption that, for any

given stage class, clutches of size 1 and 2 were equally

likely (Robert Anthony, pers. comm.).

After reproduction, the stage class 0 NSOs dispersed.

Our dispersal event allowed these fledglings to move a

maximum of 250 hexagons. The fledglings would stop

dispersing if they encountered a habitat patch that could

qualify as a territory. Dispersing NSOs were assigned

moderate spatial autocorrelation, and tended to avoid

poor quality habitats. The process of territory establish-

ment (described above) imposed limited density-depen-

dence upon the NSO population. In contrast, dispersal

frequency and behavior were completely unaffected by

the presence of conspecifics, thus intentionally ignoring

density-dependent emigration. This simplification

reduced the number of variables, and ensured that

observed source-sink structure (e.g. relationship to

habitat quality) was not a necessary consequence of

the model parameterization.

The simulation year ended with territorial NSOs

establishing home ranges, and acquiring resources

from them. Simulated home range sizes varied by

modeling region based on estimates from a number of

field studies (see summary in Schilling 2009). We used

the largest observed home range size estimates to

parameterize HexSim, because the simulated NSOs

were not obligated to extract resources from the entire

area. Simulated NSOs simply had the potential to

acquire resources over large areas if doing so was

necessary to meet their resource target. Unlike terri-

tories, home ranges could overlap, and the resources

they contained were shared equally. This made

intraspecific exploitative competition possible.

Survival rates were based on empirical estimates

obtained principally from long-term demographic

study areas (DSAs) located within the modeling

regions. Stage class 0 survival estimates were taken

from (Franklin et al. 1999, pp. 27, 28). Forsman et al.

(2011) provided stage class-specific survival estimates

for each of 11 DSAs, with mean apparent survival

values for stage 1–3 males and females listed sepa-

rately. We computed the mean of each pair (males and

females) and identified the smallest and largest of these

mean values. For any given stage class, the smallest

mean value was assigned to individuals in the low

resource class. Likewise, the largest stage-specific

mean value was assigned to individuals in the high

resource class. The stage-specific survival rates for

individuals in the medium resource class were set

equal to the mean taken over all of the survival

estimates for that stage class. Through this process,

survival rates were obtained for stage 0–3 NSOs in all

three resource classes (Table 1).

Finally, a complementary set of stage-specific

coefficients were generated that reduced NSO survival

rates to account for the impact of BOs (Table 1). The

magnitude of this effect was based on the best meta-

analysis model for survival with an additive BO

covariate across all DSAs (Forsman et al. 2011).

Environmental stochasticity

Our results are based principally on ten replicate

simulations that did not include environmental sto-

chasticity. However, for comparison purposes, we ran

100 additional replicates that included an environ-

mental stochasticity scheme developed for use in the

US Fish and Wildlife Service’s recovery planning

(USFWS 2011). Our stochastic HexSim NSO model

drew survival and reproduction rates randomly from a

collection of values, with survival and reproduction

being uncorrelated (Robert Anthony, pers. Comm.).

Table 1 Survival rates of NSOs in relation to stage class,

habitat quality (resource class), and presence-absence of barred

owls

Stage

class

Resource

class

Survival

rate without

barred owls

Survival rate

with barred owls

Stage 0 Low 0.366 0.280

Medium 0.499 0.413

High 0.632 0.546

Stage 1 Low 0.544 0.458

Medium 0.718 0.632

High 0.795 0.709

Stage 2 Low 0.676 0.590

Medium 0.811 0.725

High 0.866 0.780

Stage 3 Low 0.819 0.733

Medium 0.849 0.763

High 0.865 0.779
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Stochastic survival rates were obtained by multiplying

each of the original rates (Table 1) by a single

coefficient drawn randomly each year from the set

{0.975, 0.980, 0.985,…, 1.015, 1.020, 1.025}. Sto-

chastic reproductive rates were obtained by multiply-

ing each of the original fecundities (described above)

by a single coefficient drawn randomly each year from

the set {0.5, 1.0, 1.5}.

Model calibration

The principal metric used to evaluate the model was

population size, tracked range-wide, per modeling

region (Fig. 1), and also per DSA. The model’s

performance was assessed in part by comparing all

three measures of simulated population size to field

data. Not all DSAs had data that could be used to

approximate the density of female NSOs, and for

calibration purposes, the following eight were

selected: Cle-Elum, Olympic, Oregon Coast, HJ

Andrews, Tyee, Klamath, Cascades, and Hoopa.

Discrepancies in the fit between simulated and

observed population size were addressed by varying

the resource targets (described above).

Dispersal is a critical process through which

landscape attributes impact NSO population size and

metapopulation structure, and is a primary concern in

habitat conservation network design (Murphy and

Noon 1992). Estimates of true natal dispersal distances

were made from movements of banded NSOs (Table 2

and Fig. 9 in Forsman et al. 2002), and compared to

model output. HexSim dispersal parameters were

modified until a close fit to the empirical data was

obtained.

Fig. 1 The simulated NSO population size, stratified by modeling region. The results from ten separate replicates are shown. The

vertical axis maximum varies between plots. These results are from simulations that did not include environmental stochasticity
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Model output

Our principal simulation products were ‘‘rate-based’’

and ‘‘count-based’’ matrices, in which every row and

column represented a modeling region or a physio-

graphic province. The count-based matrices recorded

the actual numbers of individuals moving between

locations (referred to below as ‘‘flux’’). Our rate-

based matrices, which are analogous to the ‘‘con-

nectivity matrix’’ of Jacobi and Jonsson (2011), were

obtained by dividing these counts by the simulated

location-specific occupancy rates. We used the

count-based matrices to both quantify emigration

and immigration frequency (using row and column

sums), and to measure Net Flux, a metric we describe

below. Source-sink performance was set equal to the

difference between the emigration and immigration

counts, with net exporters labeled sources, and net

importers labeled sinks (tallying births minus deaths

produced virtually identical results, likely because

the model was at steady state when the data was

collected). We used the rate-based matrices to

measure how changes in connectivity affected

lambda (the matrix’s dominant eigenvalue) and thus

population growth rate.

If Crow, col represents a count-based matrix, then Net

Flux(A,B) = CB,A–CA,B describes the quantity

Flux(A ? B)–Flux(B ? A), where A and B represent

individual locations (in our case modeling regions or

physiographic provinces). We also refer to a metric

‘‘Dk’’ that here represents the change in overall

population growth rate that would result from severing

the connection between two locations without altering

the flux in the reverse direction. Specifically, we

compute Dk(A, B) as (kM–kO)/kO, where kO is the

dominant eigenvalue of the original rate-based matrix

and kM is the dominant eigenvalue of the modified

rate-based matrix obtained from adding Pr(A ? B) to

Pr(A ? A), and then setting Pr(A ? B) to zero.

Hence, Dk(A, B) measures the cost of prohibiting any

movement from A to B, forcing those individuals

instead to remain in location A. Defined this way, Dk
will be positive when the change in flux increases the

population growth rate, and will be negative when the

growth rate decreases. The Dk values can be small,

and for convenience we report them as a relative value,

DkR, defined as the percent of the maximum observed

absolute value. DkR necessarily ranges between

±100 %. Our use of Dk values mirrors the application

of eigenvalue perturbation theory in Jacobi and

Jonsson (2011).

Results

Our simulations produced a steady-state range-wide

population size of roughly 3,400 female NSOs.

Regional population sizes (Fig. 1) vary from low in

the north, especially the northwest (e.g., \100 in the

North Coast Olympics and West Cascades North

modeling regions), to high in parts of southern Oregon

and northern California (e.g. [750 in the Inner

California Coast, Klamath East, Klamath West, Red-

wood Coast, and West Cascades South modeling

regions). Differences in the observed versus simulated

number of female spotted owls on the eight DSAs

identified in the Model Calibration section ranged

from 5 to 47 %, with a mean absolute percentage

difference of 26 % (USFWS 2011).

Most modeling regions and physiographic prov-

inces functioned as demographic sinks (Table 2). The

addition of environmental stochasticity altered the

source-sink classification in just one modeling region

(West Cascades South), and no provinces. The addi-

tion of environmental stochasticity caused the relative

source-sink strength (Table 2) to change in excess of

50 % in just one modeling region (West Cascades

South) and one province (Oregon Western Cascades).

The spatial distribution of sources and sinks appeared

to vary depending on whether they were tracked by

modeling regions or physiographic provinces (Fig. 2).

The northern portions of the NSO’s range functioned

as a blend of seemingly mild sinks and mediocre

sources, due largely to low occupancy rates. The

central and southern portions of the range tended to

experience higher population sizes, and had more

pronounced source-sink activity. The individual

modeling regions and physiographic provinces were

large enough to contain multiple distinct source and

sink areas, and additional sampling schemes com-

posed of smaller spatial units could be used to reveal

this fine-grain structure. Our methodology ensured

that source-sink properties varied along a continuum,

with source and sink strength influenced by the size,

shape, and location of individual habitat sampling

units. This approach also gives rise to pseudo-sinks

(Watkinson and Sutherland 1995; Dias 1996). When

excess immigration causes NSO densities in source

Landscape Ecol (2014) 29:579–592 585
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Table 2 Observed source and sink attributes of the regions and provinces

Location Map

index

Percent of

population

(standard)

Source–sink

type (standard)

Source–sink type

(stochastic)

Source–sink

strength (standard)

Source–sink

strength

(stochastic)

Modeling Regions

East Cascades

south

R9 3.8 Sink Sink 100 100

Oregon coast R5 1.0 Sink Sink 48.7 49.8

Redwood coast R10 16.4 Sink Sink 28.1 33.6

West Cascades

central

R4 1.2 Sink Sink 16.9 20.8

North coast

Olympics

R1 0.1 Sink Sink 3.6 4.1

West Cascades

north

R2 0.1 Sink Sink 3.5 3.7

West Cascades

south

R6 15.3 Source Sink 25.8 5.7

East Cascades

north

R3 3.3 Source Source 31.7 33.8

Klamath west R7 20.0 Source Source 51.1 30.7

Inner California

coast ranges

R11 21.7 Source Source 97.9 100

Klamath east R8 17.1 Source Source 100 67.3

Physiographic Provinces

California coast

range

P10 16.6 Sink Sink 100 100

Oregon

eastern Cascades

P8 3.5 Sink Sink 46.8 29.4

Oregon coast

range

P5 0.8 Sink Sink 41.8 29.8

California

Cascades

P12 2.8 Sink Sink 35.9 39.4

Washington

western Cascades

P2 1.3 Sink Sink 7.2 7.0

Oregon

Willamette

Valley

P6 [0.0 Sink Sink 6.2 3.7

Washington

western lowlands

P4 [0.0 Sink Sink 3.3 2.7

Washington

Olympic

Peninsula

P1 [0.0 Sink Sink 0.1 0.0

Washington

eastern Cascades

P3 1.6 Source Source 4.6 5.0

Oregon western

Cascades

P7 23.3 Source Source 37.1 18.3

Oregon Klamath P9 13.7 Source Source 37.6 26.9

California

Klamath

P11 36.4 Source Source 100 100

Map Index values correspond to those in Fig. 2. The right two columns express source-sink strength as a percent of the best source or

worst sink. Data in the columns labeled ‘‘Standard’’ were obtained from the simulations that did not include environmental

stochasticity
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populations to increase beyond local carrying capac-

ities, habitat and demographic limitations emerge

within pseudo-sink populations, causing them the

behave like sinks. Our methodology does not specif-

ically identify pseudo-sinks (though this could be done

by generating output matrices for snapshots in time,

which the model permits).

We used two simple linear regressions to examine

how effectively habitat quality predicted the observed

source-sink properties. For each region and province,

we calculated the mean habitat suitability (RHS) of its

hexagons and recorded the source-sink strength as a

percentage of the worst sink (-100 to 0) or best source

(0 to 100). Both regression analyses revealed non-

significant relationships between habitat suitability

and source-sink strength (r2 = 0.18, F = 1.98,

P = 0.19 for modeling regions; r2 = 0.14,

F = 1.57, P = 0.24 for provinces). These weak

relationships reflect multiple complicating factors

including habitat fragmentation, intraspecific exploit-

ative competition, the impact of BOs on NSO survival,

strict NSO site fidelity, and mechanistic movement

behavior. Recall that our source-sink properties

emerge from interactions between individuals and

the landscape. This contrasts with traditional models

in which landscape source-sink properties are stipu-

lated in advance (based on habitat quality), and used

explicitly to guide the redistribution of individuals.

Net Flux between modeling regions was greatest

from the Klamath East to East Cascades south

modeling regions (Table 3), and between the Califor-

nia Klamath and California Coast Range physio-

graphic provinces. Net Flux was strongly correlated

with Dk, but the impact of severing Flux(A ? B)

versus Flux(B ? A) varied considerably (Table 3),

indicating that the flux in a specific direction was

sometimes particularly important to the population. In

an evaluation of the simulations performed without

environmental stochasticity, we found that in the

regions and provinces respectively, 79 and 85 % of the

variation in Dk was explained by Net Flux (based on

the entire data set, not the subset displayed in Table 3).

The addition of environmental stochasticity had little

impact on Net Flux or Dk.

The worst sink regions were R5 and R9, and the

best source regions were R8 and R11. R9 and R5 were

also the recipients of the two largest Net Flux values,

and neither made a net contribution to any other

modeling region. R11 and R8 both contributed

substantially to other regions. R11 supported three

regions to the north, and its flux to R7 was the third

largest overall. R8 supported R6 and R9, with the Net

Flux to R9 being the largest observed. R80s capacity to

export NSOs was apparently buoyed by it also being a

net importer from both R7 and R11. A similar pattern

emerged from the physiographic provinces. P10 and

P8, the worst two observed sinks, were the recipients

of the largest Net Fluxes of NSOs, and neither was a

significant net exporter. P11 and P9, the two best

sources, both exported NSOs to their neighboring

provinces. The three best source modeling regions,

R11, R8, and R7, were also responsible for the largest

observed Net Flux values. In fact, every substantially

positive Net Flux of NSOs (stratified both by regions

and provinces) emanated from a demographic source.

Our results reveal two principal zones of simulated

NSO productivity (Fig. 3). The largest net landscape-

scale flux originates in the California Klamath, and it

distributes NSOs primarily into the California coast

range and the California cascades (Fig. 3, bottom oval).

Fig. 2 A graphical presentation of the relative source and sink

values displayed in Table 2. The larger symbols denote sources

or sinks that exceeded 50 % of the maximum observed value.

The R and P values correspond to the Map Index column in

Table 2. These results are from simulations that did not include

environmental stochasticity
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The second principal net flux begins in the Oregon

Klamath, and it extends to the north, moving NSOs into

the Oregon coast range and the Oregon cascades. While

these results are not surprising, there would be no way to

draw such conclusions from the traditional products of

spatially explicit population models, such as the popu-

lation trends displayed in Fig. 1.

Our estimates of source-sink properties and Net

Flux can be used to construct a summary graph

(Fig. 4). Range-wide, one-third of the NSO population

is living in demographic sinks, some of which appear

more dependent on sources than others. The California

and eastern Oregon Cascades, for example support

roughly equal fractions of the simulated population.

Yet the eastern Oregon Cascades absorb many more

simulated NSOs, suggesting this region could at

present be a net liability. The Klamath region appears

the most critical to population stability overall (Fig. 4).

Discussion

Individual-based models are commonly used to

develop population viability analyses (PVA) for

species conservation efforts. But estimates of future

population size or probabilities of extinction—the

typical products of a PVA model—cannot reveal what

role specific landscape locations play in promoting

species viability. This study of NSO population

dynamics shows how additional insights can be

obtained from such a model. We used a detailed

spatially-explicit IBM to generate location-stratified

matrices, and used the matrices to evaluate species–

landscape interactions. Our analysis illustrated how

demographic sources and sinks were distributed

spatially, how this distribution drove immigration

and emigration rates, and how altering these rates

could have impacts range-wide. We replicated our

Table 3 Net Flux and DkR for the regions and provinces exhibiting a Net Flux of at least 10 % of the maximum observed value

Starting region Ending region % Net flux

(standard)

% Net flux

(stochastic)

DkR

(standard)

DkR (stochastic)

Modeling Regions

Klamath east East Cascades south 100 100 85.1 [-100] 74.7 [-100]

Klamath west Oregon coast 49.5 49.2 45.9 [-54.4] 39.7 [-50.5]

Inner California coast ranges Klamath west 44.4 71.6 28.3 [-21.0] 41.2 [-31.0]

Klamath west Redwood coast 36.2 43.6 3.9 [-4.5] -2.9 [3.1]

Klamath east West Cascades south 36.0 42.5 27.4 [-44.7] 31.3 [-52.4]

Inner California coast ranges East Cascades south 30.4 32.8 22.4 [-14.2] 21.6 [-14.6]

West Cascades south Oregon coast 28.7 24.5 8.6 [-1.4] 5.4 [-0.9]

West Cascades south East Cascades south 27.8 13.4 24.4 [-19.5] 12.1 [-10.4]

East Cascades north West Cascades central 21.8 25.4 20.9 [-36.8] 21.9 [-30.1]

Inner California coast ranges Klamath east 19.7 28.3 18.4 [-15.2] 24.2 [-20.8]

Klamath west Klamath east 12.7 21.8 19.1 [-19.5] 24.9 [-28.9]

East Cascades north West Cascades south 4.7 14.4 -26.4 [1.8] 55.0 [-2.4]

Physiographic Provinces

California Klamath California coast range 100 100 47.4 [-100] 45.2 [-100]

Oregon western Cascades Oregon eastern Cascades 52.9 34.2 18.6 [-37.6] 11.2 [-25.7]

Oregon Klamath Oregon western Cascades 35.0 29.4 14.7 [-18.1] 11.3 [-15.4]

Oregon western Cascades Oregon coast range 22.9 15.3 4.1 [-0.9] 2.4 [-0.6]

California Klamath California Cascades 22.2 25.9 12.6 [-27.0] 12.8 [-26.3]

Oregon Klamath Oregon coast range 19.2 14.7 10.2 [-10.4] 7.2 [-7.7]

California Klamath Oregon Klamath 8.0 11.2 6.6 [-8.8] 6.4 [-10.3]

The Net Flux and DkR values are expressed as a percent of the maximum absolute (either positive or negative) observed value. The

DkR values for the flux in the opposite direction are shown in brackets. Negative DkR values result from matrix manipulations that

decrease k (e.g. trapping individuals in a sink). Data in the columns labeled ‘‘Standard’’ were obtained from the simulations that did

not include environmental stochasticity
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analysis using simulations incorporating environmen-

tal stochasticity, and by doing so were able to

demonstrate that our results appear robust to model

uncertainty. We drew our conclusions from simula-

tions run within a static landscape, but our method-

ology could be employed, unchanged, in a dynamic

environment.

We know from theory that it is critical to protect

demographic sources, and that it can also be important

to preserve or even improve some demographic sinks.

Jacobi and Jonsson (2011) reinforced this point when

they concluded that ‘‘the sites that act as both donor

and recipient simultaneously are most important for

the persistence of the population’’. Our results (Fig. 4)

lend additional support to this principle, though we

make an added distinction between flux and Net Flux.

Our methods can be used to illustrate how sources and

sinks are arrayed across a landscape, and can do so at

multiple spatial scales simultaneously. And these

estimates of source-sink behavior emerge as the

product of ecologically-meaningful mechanisms that

are built into the simulation model—they are not

inferences based principally upon habitat pattern and

dispersal kernels.

At steady-state, large Net Flux values suggest a

dependency of one location upon another, and the

population-wide significance of these relationships is

reinforced by high correlations between Net Flux and

Dk. By locating dominant Net Flux values within the

landscape (Fig. 3) we were able to identify two

principle zones of spotted owl productivity. These

maps could be used to infer how local management

decisions could have range-wide consequences. For

example, our results suggest that specific source (R7,

R8, R11) and sink (R5 & R9) regions (Fig. 3) may be

particularly important areas to target for habitat

protection and restoration, respectively. Likewise, this

analysis indicates that future landscape changes lim-

iting dispersal between the Klamath and Inner Cali-

fornia Coast Ranges might be more consequential for

NSOs than analogous disturbances affecting move-

ment between the Klamath and Redwood Coast

(Fig. 4). The modeling regions and physiographic

provinces are quite large, and additional analysis

making use of multiple fine-grained sampling schemes

would need to be performed before any actual

management recommendations could be defended.

Conclusions

When habitat size and quality are poor predictors of

population performance, complex source-sink dynam-

ics are the likely culprit. The existence of complex

source-sink dynamics may be more the rule than the

exception, particularly for species of conservation

concern. A theoretical foundation for understanding

the landscape-scale implications of source-sink

dynamics was constructed by Pulliam (1988). But it

has proven difficult to develop methods that connect

this theoretical work to the practical conservation

applications that would surely benefit from it (Liu

et al. 2011). Here, we have attempted to bridge this gap

using the NSO as a case study, but have developed

methodology that is broadly applicable to many

species and landscapes. Importantly, our approach

can reveal movement patterns and source-sink struc-

tures at multiple spatial scales without compromising

Fig. 3 A graphical representation of the Net Flux values listed

in Table 3. The largest fluxes are displayed in black, interme-

diate values are shown in gray, and the smallest Net Flux values

are shown in white. The arrows point in the direction of the flux.

Two principle patterns of NSO flux that emerge from the

simulations are most evident when resolved by the physio-

graphic provinces (see gray ovals), but are also apparent within

the regions. These results are from simulations that did not

include environmental stochasticity
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the ecological sophistication of the model system. This

complements other popular methodologies (Minor and

Urban 2007; Phillips et al. 2008; Moilanen 2011;

Rayfield et al. 2011; Carroll et al. 2012), which more

precisely address connectivity, but at a cost to realism.

Our location-stratified projection matrix models are

compact and easy to understand, and their derivation

from the biologically realistic IBM imbues them with

conservation relevance. Matrix models have the added

advantage of being simple and familiar, and they

facilitate rapid experimentation. Our manipulation of

the rate-based matrices for the purpose of obtaining

Dks serves as an example. While the IBM itself could

have been used to quantify the range-wide population

responses to changes in connectivity, setting up and

running all of the simulations necessary to make

independent assessments for every pair of modeling

regions and physiographic provinces would be a

daunting task. Performing the equivalent analysis

using the projection matrix model is straightforward

and efficient.

The approach described here unifies source-sink

and landscape connectivity analyses, and does so

without imposing methodological constraints on bio-

logical realism. Our results illustrate how individual

sources and sinks interact to form networks, and they

quantify the population-wide consequences of small-

scale modifications to habitat connectivity. Our

methodology will also help illustrate why simple

measures of habitat quality often turn out to be poor

predictors of population performance. Extensions of

this work could incorporate dynamic habitat maps

depicting future land use, climate change effects, or

other disturbance regimes.
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